Enteric nervous system development in avian and zebrafish models.
نویسندگان
چکیده
Our current understanding of the developmental biology of the enteric nervous system (ENS) and the genesis of ENS diseases is founded almost entirely on studies using model systems. Although genetic studies in the mouse have been at the forefront of this field over the last 20 years or so, historically it was the easy accessibility of the chick embryo for experimental manipulations that allowed the first descriptions of the neural crest origins of the ENS in the 1950s. More recently, studies in the chick and other non-mammalian model systems, notably zebrafish, have continued to advance our understanding of the basic biology of ENS development, with each animal model providing unique experimental advantages. Here we review the basic biology of ENS development in chick and zebrafish, highlighting conserved and unique features, and emphasising novel contributions to our general understanding of ENS development due to technical or biological features.
منابع مشابه
Functional analysis of zebrafish GDNF.
We have identified zebrafish orthologues of glial cell line-derived neurotrophic factor (GDNF) and the ligand-binding component of its receptor GFRalpha1. We examined the mRNA expression pattern of these genes in the developing spinal cord primary motor neurons (PMN), kidney, and enteric nervous systems (ENS) and have identified areas of correlated expression of the ligand and the receptor that...
متن کاملDevelopment of the zebrafish enteric nervous system.
The enteric nervous system (ENS) is composed of neurons and glia that modulate many aspects of intestinal function. The ability to use both forward and reverse genetic approaches and to visualize development in living embryos and larvae has made zebrafish an attractive model in which to study mechanisms underlying ENS development. In this chapter, we review the recent work describing the develo...
متن کاملRet isoform function and marker gene expression in the enteric nervous system is conserved across diverse vertebrate species
The enteric nervous system (ENS) derives from migratory neural crest cells that colonize the developing gut tube, giving rise to an integrated network of neurons and glial cells, which together regulate important aspects of gut function, including coordinating the smooth muscle contractions of the gut wall. The absence of enteric neurons in portions of the gut (aganglionosis) is the defining fe...
متن کاملEndothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling.
Enteric neural crest-derived cells (ENCCs) migrate along the intestine to form a highly organized network of ganglia that comprises the enteric nervous system (ENS). The signals driving the migration and patterning of these cells are largely unknown. Examining the spatiotemporal development of the intestinal neurovasculature in avian embryos, we find endothelial cells (ECs) present in the gut p...
متن کاملMeis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development
During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 417 2 شماره
صفحات -
تاریخ انتشار 2016